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In this note, we describe a forecasting method for time series which represents, from
different point of views, an extension of the work of [13], recently published on this
Journal. Combining some basic notions of the theory of nonlinear dynamical systems
and of neural networks. the method leads to the construction of a nonlinear piece-wise
model in the reconstructed phase space. A description of the algorithm together with
some flexible routines are provided.
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1 Introduction

Jadiz and Riddick (13 provides some flexible routines routines for im-
plementing the nearest-neighbors approach to time series prediction.
In this paper we present some interesting extentions which are based
on the the theory of nonlinear dinamical systems [14] and on feedfor-
ward artificial neural networks (F-ANN)(31].

First, we start dealing with the identification and reconstruction
(embedding) of a low-dimensional attractor by the Takens Theorem,
that is with the choice of the time lag  and the embedding dimension
d. We then apply a preprocessing (filtering) technique known as Sin-
gular Spectrum Analysis (see [1] and [28]), which proved to be quite
useful in improving forecasting of noisy data (19]. After identifying in
the reconstructed phase space the k closest neighbors of the reference
points y,, we estimate a local neural regression model and predict the
state y¢i7 of the system , where T is the prediction step.

Some papers showed that the proposed technique is able, under
proper conditions, to prolong the trajectories of an unknown chaotic
low-dimentional dinamical system (see [7} and [8]). This matter is
only partially connected to time series forecasting. Experiments con-
ducted on some time series generated by a simple (noisy and noise-
free) chaotic model, show that the method is potentially interesting
for predicting the future behavior of the process.

Section 2 briefly presents the theoretical notions undelying the
proposed method. Section 3 contains the description of the algorithm
and the discussion of some applicability aspects. In section 4 the code
1s described and some practical examples are reported. Moreover, the
predictive performances of the methodology applied to some chaotic
time series with and without noise are shown. Section 5 concludes.

2 Theoretical background

2.1 Nonlinear dynamics

Let the data generating process (DGP) be measured by the variable
Y: € R and let the series {m:1<t< N} be one of its realizations of
length N. Following [13], we denote our data with {ze = (w,x): 1<
t < N}, where x, is a vector of covariates. In the field of time series
prediction, the elements of x; are often lagged values of 3. This is true

especially when, assuming the existence of an underlying deterministic
dynamics in the series, we apply the Takens’ Theorem.

We assume that Y; = ¥, + Z¢, where Z; is a purely stochastic
component, and ¥, is a deterministic process, governed by an evolu-
tionary deterministic law. Nella maggior parte dei casi reali, we do
not have direct and complete access to the entire vector of the state
variables I'; of the true DGP. Tipically we observe only one (or a com-
bination) of them through a certain ‘viewer’ function & : R™ - R,
that is: W, = h(T;), where dT',/dt = F(I;) is the true DGP, and
F : R™ 5 R™ is the vector field. Under weak regularity conditions
on h and F, and for sufficiently large positive integer d (d > 2m + 1),
the Takens’ Theorem guarantees that the time evolution of the recon-
structed vector:

U= (U, ¥, ..., ¥, (g-1)r) € R?

is diffeornorphically equivalent to the true (and unknown) dynamics
of I'; (25, 2). This means that there exists a deterministic map G :
R? 5 RY, dependent on d, such that:

v, = G(¥) (1)

Because of the unpredictable character of =, we should concen-
trate our forecasting efforts only on the {unknown) ¥; component,
trying to approximate as better as possible the map G of (1) in the
reconstructed space. This approach Justifies the choice of setting x; as
a vector of lagged values of y,. Of course, the quality of the predictions
strongly depends on the signal-to-noise ratio, defined by s/n =0l /ok,
where ¢ and o2 are the variances of ¥ and = respectevely. In order to
estimate G, many global 17, 29, 27] or local [5, 3, 25}, linear (5, 24] or
nonlinear {29, 20] models have been proposed. In the present work, we
analyse a neural nearest-neighbor forecasting method, that is a non-
linear regression model based on feedforward neural approximators.
The aim is to obtain local estimates C‘y,. of G in the neighborhood of
¥; where for neighborhood we mean the & nearest points of y; in the
reconstructed phase space.

2.2 Filtering with SSA

It is worth to point out that all the classical theorems concerning
embedding and phase Space reconstruction are based on the hyphote-
sis that data are noise-free (see (25]). Only recently some extensions
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of geometric time series analysis to genuinely stochastic syster.ns ap-
peared (21, 26]. Moreover, as written above, if we want to predict the
future evolution of the series, we must concentrate our efforts only
on the deterministic part ¥ of the process. These are the two main
reasons which led us to the decision of applying a filter to our data in
order to separate as much as possible ¥ from Z.

Many are the parametric and nonparametric filtering methods for
time series proposed in literature, see for example (23, 4, 11). An
intuitive and easily applicable technique, which shows good denois-
ing properties, is the one based on Singular Spectrun Ana.l_ysis ($SA)
(2, 28]. As pointed out by [16] (see also and [25]), SSA is by itself
an alternative (and for some aspects, better) reconstructing method.
Thus, it can be easily integrated in the algorithm proposed here.

For simplicity, we suppose that y; be a unidimensional vector
of observations. The generalization to the multidimensional case is
straightforward and will be omitted.

The first step in the implementation of SSA is to construct the
so-called ‘trajectory matrix’ in the reconstructed space:

<

=

S
MY

v = = . 2

1

N : : :
YN-m+1 .o UN Y‘]‘v-m.n
From now on, we drop the superscript d whenever possible. Using
the well known Singular Value Decomposition (SVD), the rectangular
matrix Y can be decomposed as Y = SECT, where S is a matrix
whose columns s; are the eigenvectors of the symmetric matrix YYT,
C is a matrix whose columns ¢; are the eigenvectors of the covariance
matrix YTY: T is a diagonal matrix whose elements ); are the positive
square roots of the eigenvalues of YTY. Thes; and ¢; vectors are also
called singular vectors and the elements of £ (considered in descending
order) are called singular values of Y.

Because singular vectors are orthogonal, the ¢; vectors can be used
as an orthonormal basis of the space R? on which d-dimensional points
z¢ can be projected. Those vectors are sometimes called ‘empirical
orthogonal functions’ (EOFs). The columns of the matrix A = ZC
are called principal components (PCs) and represent the coefficients
of projection of vectors z% onto the base {c;}%. ;. Finally, the singular
values ; can be ordered as 91 > 02 > ... 2 0m 2 0.
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If we consider a trajectory exploring on average an ellipsoid of
dimension d, the c; vectors correspond to the directions of the principal
axes of the ellipsoid, and the associated A\? values correspond to the
lengths of the axes. Each singular value ), is equal to the variance of
the i—th principal component.

Recalling our basic assumption that {1} is the result of a deter-
ministic DGP contaminated by an observational white noise, than,
if the series is stationary and sufficiently long, the covariance matrix
YTY can be approximated as follows:

Y'Y = ¢7¢ + (62/d)1 (3)

where o denotes the variance due to noise, I is the (d x d) identity
matrix and ¥ is the trajectory matrix of the deterministic part ¥,.
Clearly, in this case the singular vectors c; of the perturbed trajectory
matrix will be the same as those of the unperturbed one, whereas,
owing to noise, the singular values will be uniformly increased by an
amount o2 /d.

For any given value of the window length d and the level of noise
a%, the signal-to-noise ratio (s.n.r.) associated with each direction -
measured by the quantity d)? /a% - will decrease as the order of the
corresponding singular value increases and clearly noise can entirely
dominate signal for ‘higher order directions’. While, in general, the
singular values of a noise-free series will be uniformely declining with
the order i, in the presence of sufficiently strong white noise we should
observe a plateau - the 'noise floor’ - in the spectrum. If this is the
case, only p < d singular values will be above the noise floor.

2.3 Neural regression models

The choice of a feed-forward artificial neural network (F-ANN) is mo-
tivated by two properties. First, they can approximate virtually any
function of interest to any desired degree of accuracy, provided many
sufficiently hidden units are available. In other words, this kind of
neural network represents a class of universal approximators {12}, This
property makes neural models very appealing in nonlinear regression.
Secondly, (31} demonstrates that, under mild smoothness conditions
on f, feedforward neural networks are consistent estimators of f. In
the specific context of chaotic dynamics, neural networks are found
to be competitive with the best of the approximation methods in the



construction of a nonlinear map from a given time series [30] as well
as in recovering the derivatives of a nonlinear map [6].

Without going into details (see [31] for a wide and rigorous treat-
ment of the statistic aspects of F-ANN), a F-ANN is made by a set
of elementary units (the neurons) connected together according to an
architecture organized by layers: an input layer, one or more hid-
den layers and an output layer. In our algorithm, input patterns are
the & d-dimensional nearest neighbors of y;, {¥n, };‘=1, where d is the
embedding dimension of the reconstructed space. Input units send
information to the hidden units using a linear transformation deter-
mined by their connection strength -,,. Each hidden unit performs a
nonlinear transformation on its total input, preducing an output using
a sigmoid function K(-), called activation function, which usually is
the same for all the hidden units. The output .7 € R% of 2 1-layer
F-ANN can be represented as

h d
Vivr = ZB, . K(Z TraYis + br) 4
r=1 a=1

where ;, is the s component of y; (%is = Yi-(a-1)r)» a0d fr, with
8, € R®, are the weights connecting the output of the hidden units to
the output units, A is the number of hidden units, and b, is the bias of
the hidden units. The k output vectors of the net are then compared
to the points {y,.’+1~};‘=l which represent the T-ahead evolutions of
the system starting from the neighbor Yi, {¥n, };‘=1. The 8 and ~
parameters are estimated minimizing the error function:

k
Z(Yn,-+T - 5’n,-+T)2
J=1

3 The algorithm

The proposed forecasting algorithm can be summarized as follows:

1. Starting from the observed time series {we}L,, use the method of
delay (MOD) to build the L = N —d+1 points y; € R in the re-
constructed phase space, where Y = {y, Yerr, Yr+2r> - - -, Yo (dmt)r }»
d is the embedding dimension and 7 is the time delay.

2. Apply SSA on the trajectory matrix Y and take the first p princi-
pal components, that is consider the first p columns of the matrix
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YC. Call 7, the p-dimensional points of the filtered phase space
obtained in this manner.

3. Take the last point of the reconstructed trajectories ¥

4. Look for the k closest points to ¥ {ynJ}szl, ie. find the k
points which minimize the distance from the reference point A7
this set of points represents the total input of the neural network.

5. Select the successors {Fn,+1}52), ie. find the & points in the
phase space which correspond to the evolutions of the dynamical
system starting from the set of points elected in step (4); this set
of points is the total output of the neural network.

6. Locally estimate the map G fitting a neural model Gy, to the
two sets of points in R? calculated in step 4 and 5.

7. Put ¥, in the input of the network and calculate ¥, p = GFL F.);
this is the prediction of the state of the system after a time of
length T'.

The parameters involved in the algorithm are: the number A of
hidden units of the F-ANN, the time delay 7, the embedding dimension
d and the number of nearest neighbors k.

One of the most important and unresolved problems in practical
applications of F-ANN is how to determine the appropriate complexity
h of the network in order to avoid overfitting and to improve general-
ization. Rougly speaking, the F-ANN should have a sufficiently high
degree of complexity, that is a sufficient capacity to approximate the
unknown function Gy.. In the meantime, it should not be too much
complex because it could overfit data loosing the capacity to gener-
alize. The two main approaches to controlling complexity are model
selection (pruning, bootstrap estimate of the generalization error) and
regularization (weight decay, early stopping [22], etc.). In our fore-
casting procedure, overfitting is not a crucial matter because data are
always filtered before model estimation. Therefore, we prefer to base
the choice of h on the minimization of the in-sample normalized mean
square prediction error (NMSPE) for different degrees of complexity.

Some authors {9, 14, 10] argue that an ‘optimal’ embedding can
only be defined relative to a specific purpose for which the embedding
is used. Nevertheless, the usual autocorrelation function, the time
delay mutual information and a visual inspection of delay represen-
tations with various lags provide useful information about reasonable
delay times. For highly sampled flow data, small delays yield delay
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vectors which are all concentrated around the diagonal in the recon-
structed space and thus the structure perpendicular to the diagonal is
almost invisible. On the converse, large delays lead to vectors whose
components are almost uncorrelated and seemingly randomly distrib-
uted.

The false nearest neighbors procedure is a popular and intuitive
method which can give guidance about the proper dimension of re-
construction [15]. It examines the fraction of nearest neighbors as
a function of the embedding dimension to determine the necessary
global dimension to unfold an attractor. Thus the minimum embed-
ding dimension is found when most of the nearest neighbors do not
move apart significantly in the next higher dimensional embedding.
Because prediction is the final purpose of the embedding step of our
algorithm, we prefer to choose d together with the number & of nearest
neighbors. Following [3], we divide the available training data into a
learning and a validation set and compute the NMSPE on the vali-
dation set for different values of k and d. The optimal values of the
parameters are those corresponding to the minimum prediction error.

The problem concerning the choice of the optimal number p of
principal components, which allow to eliminate as much as possible
the noise from the series with a minimal distortion of the underlying
dynamics, is a hard and substantially unresolved question. Some au-
thors {28} suggest to evaluate p by bootstrap methods, while others
{18} propose a ‘best-prediction’ method which is strictly related to our
forecasting problem under many aspects. For simplicity, here we pre-
fer to adopt the approach of [1] where the optimal p is defined as the
number of singular values above the noise floor.

4 Code and examples

A description of the main commands is given in appendix.

In order to show the use of the provided code, we consider three
examples which are more and more close to a real situation.

In the first case we suppose to be in a noise-free environment and
to have a series containing all the variables which completely define
the state of the system. These are two rather unrealist conditions
but they greatly simplify our problem: we can avoid the embedding
and filtering steps. The algorithm reduces to finding the k nearest
neighbors of the point ¥, and fitting a local neural model GyL‘

We start generating a 3-dimensional trajectory matrix of a Lorenz
dynamical model by our integrate command (a fixed-stepsize third-
order Runge-Kutta method). The required arguments are: (1) a string
containing the name of an ODE file, (2) a vector of systemn parameters,
(3) a vector containing the initial condition, (4) the stepsize, (5) the
transient time, (6) the length of the output series.

lor=integrate(’lorenz’ ,[16 45.92 4], [10,10,10], .01, 1000 ,10000) '.

After splitting the series in two parts, a learning (insamp) and a testing
(outsamp) set, we apply the nnpredic command: the number k of
era.rest neighbors is 100, the prediction step T is 25, the local model
is a F-ANN with a direct prediction method and a number of units in
the hidden layer equal to 10,

ntest=1000; nlearn-length(lor)-nteut;
insamp=lor(i tnlearn,:); outsamp=lor (nlearn+i tend,:);
preds=nnpredic (insamp,outsamp ,100,25, ’neural’ »'direct?’, 10);

The below commands vield a plot of the true trajectory together with
the corresponding predicted values (see Fig. 2):

preds~preds(1:end-25,:); outsamp=outsamp(26:end, :);
Plot3(preds(:,1),preds(: »2),preds(:,3),’.+, ...
outsamp(:,1),outsamp(:,2) ;outsamp(:,3));

- In the second example, we suppose to measure only one of the three
noise-free state variables describing the system. Therefore, we must
first apply the MOD to reconstruct the underlying attractor. The
rebuild command yields the trajectory matrix in the reconstructed
phase space. Fig. 3 plots the cross-validation NMSPE vs. d and & and
suggests an embedding dimension equal to 3 together with k = 80.

x=lor(:,1);

m=3; tau=5;

y=rebuild(x,m,tau);

ntest=1000; nlearn-length(y)-ntest;

insamp=y(1:nlearn,:); outsamp~y(nlearn+i:end,:);

preds-nnpredic(insamp,outsamp,SO,25,’neural’.’ditect’ 10);

preds=preds(1:end-25,:); outsamp~outsamp(26:end,:) ; | '

plots(preds(:.l),preds(:,2),pteda(:,3),"’,...
outsamp(:,l),outsamp(:,2),outsamp(:,3));



In the final example we consider a quite realistic case: only one
noisy state variable is available. Therefore, we need to apply the
algorithm as a whole.

noisyx=x+2+randn(size(x));
m=10; tau=5; p=3;
ssaplot(noisyx,m,tau, [1:4],’al1");

The ssaplot command gives different plots of the spectrum of
singular values (see Fig. 4) and suggest to take three principal com-
ponents in the SSA flter.

tiltx=(rc(noisyx,m,tau,p))’;
y=rebuild(filtx,p,tau);

insamp=y(1:nlearn,:); outsamp=y(nlearn+i:end,:);
preds-nnpredic(insamp,outsamp,80,25,’neural’,’direct’,10);
preds=preds(1:end-25,:); outsamp=outsamp(26:end,:);
n=length(preds);

rbx=rebuild(x,p,tau);

rbx=rbx(nlearn+26:end, :);
plot(i:n,preds(:,3),’.’,1:n,rbx(:,3));
disp(umse(preds(:,3) ,rbx(:,3)));

Fig. 5 shows the plot of the true noise-less series and of the cor-
responding predicted values. The NMSPEs for linear, quadratic and
neural models are 0.64, 0.55 and 0.24, respectevely.

5 Summary

The simulations of the above section suggest that neural nearest-
neighbors prediction models can outperform the corresponding linear
or yuadratical models. Therefore, althought they impose a heavier
computational burden, neural models should be preferred to or, at
ieast, should be used in combination with other forecasting models.
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nnpredic

Description
Nearest-neighbors time series prediction with different local models

Sintax
y = nnpredic(insample, outofsample, k, T, opt1, opt2, nhidden)

Input
insample: learning set represented by a d-dimensional vector of

inputs (generally the output of the rebuild command)
outosample: testing set

k: number of nearest neighbors (this parameter should be
chosen by the choosedk command)

T: prediction step

optl: local model type: ‘constant’, 'linear’, "quadratic’, 'neural’

opt2: type of prediction: 'direct’, ‘iterative’ (when T = 1

direct and iterative predictions give the same result)
nhidden: number of unit in the hidden layer

Output

y: predicted points in the reconstructed phase space

Example

load ‘or.txt -ascii

x=:rebuild(lor(:,1),3,5);

7=x(602:902,:);

insample=x(1:500,:);

outofsample=x(600:900,:);

y = nnpredic(insample,outofsample,30.2,'linear','direct');
plot3(y(:,1).y(:,2),y(:,3),'.',z(:,l),z(:.2).z(:.3))
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See also
choosedk, rebuild
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choosedk

Description
Algorithm for the optimal choice of the d and k parameters based on the
minimum {cross-validation) nearest-neighbors prediction error. A portion
of the reconstructed series (the learning set) is used for estimating the
local regression model. On a second portion (the cross-validation set) the
algorithm evaluates the prediction error of the model.

Sintax
[krange, drange, errors] = choosedk(x, noofpreds, T, tau, drange, krange,
optl, opt2, opt3, nhidden)

Input
x: vector or matrix data (state variables must be placed

in columns)

noofpreds:  number of points in the testing set

T: prediction step

tau: time lag

drange: range of values for the embedding dimension

krange: range of values for the number of nearest neighbors
optl: local model type: ‘constant’, 'linear’, ‘quadratic’, ‘neural’

{default: ‘linear')

opt2: type of prediction: ‘direct’, ‘iterative’ (when T = 1
direct and iterative predictions give the same result)
(default: “direct’)

opt3: type of graphic representation: "2dplot’, "3dplot’, 'no-
plot’ (default ="2dplot’)

Output

errors: matrix of prediction errors for different values of d and
k

16

Example

load lor.txt -ascii

krange,drange,erroridk]= - o . '
Lhoosedk(lor(1:500,2),100,1,5,[2:5],[10:10:100]. lineare’,'diretta’, 2dplot’)

See also '
nmse, nnpredic, plotdk, rebuild

17



rebuild

Irc

Description
Method of defay for attractor reconstruction

Sintax
y = rebuild(x, m, tau)

Input
x: vector or matrix data (state variables must be placed
in columns)
m: embedding dimension
tau: time lag
Output
¥ matrix of reconstructed points (each row represents an
m-dimensional point)
Example
load ior.txt -ascii
x=lor(.1);

y = rebuild(x,5,8)

See also

18

Description
The routine filters the input series according to the method based on SSA
and developed by [28]

Sintax
y = rc(x, m, p, tau)

Input
X3 vector or matrix input data
m: embedding dimension
p: number of principal components
tau: lag time
Output
y: filtered signal
Example

load lornoise. txt -ascii
x=lornoise(:,1);
n=length(x);
y=rc(x,25.3,1);
plot(1:n.x,1:ny)

See also
nnpredict
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ssaplot

Description
Using different graphical representations, this command plots the singular
values and singular vectors of the (uni or multivariate) input series

Sintax
h=ssaplot(x, m, tau, eigvectno, opt)

Input
x: vector or matrix input data
m: vector of embedding dimensions
tau: lag time

eigvectno:  vector containing the number of singular vectors to
be plotted (es. eigvectno={1,2,3,4] plots the first 4
eigenvectors)

opt: type of piot required:
- 'spec’ piot of the spectrum of singular vectors
- 'logspec’ plot of the logaritmic spectrum of the sin-
gular vectors
- 'diff’ plot of the difference between successive sin-
gular vectors: ﬁ*i;i i=1,2... . m~1
- ‘cum’ plot of the cumulative percentage of total vari-
ance explained by the first ¢ principal vectors '
- ‘all’ the four above graphics plotted together'
- ‘eigvects’ plot the four singular vectors specified by

eigvectno
Output
h: the output of this command is the handle of the output
figure

20

Example

load lor.txt -ascii o
ssaplot(lor(1:500,1),25,5,[1,2,3,4], a'Il ) .
ssaplot(lor(1:500,1),25,5,[1,2,3.4], "eigvects )

See also
eigspec, rebuild
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’ Figure 2: Prediction of a 3-dimensional noise-free Lorenz series with a local
’ peural model. Balls are the predicted values. The solid line is the true
trajectory.

Figure 1. Example of nearest-neighbor prediction with three types of lo-
cal models: linear, quadratic and neural. Balls and triangles represent the
nearest neighbors of z, and T:+7, TESpectevely.
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